FAM136A as a Diagnostic Biomarker in Esophageal Cancer: Insights into Immune Infiltration, m6A Modification, Alternative Splicing, Cuproptosis, and the ceRNA Network

Author:

Sun Shaowu1,Huang Chunyao1,Fan Wenbo1,Wang Zhulin2,Li Kaiyuan1,Liu Xu1,Wang Zelong1,Zhao Tianliang1,Zhang Guoqing1,Li Xiangnan13ORCID

Affiliation:

1. Department of Thoracic Surgery and Lung Transplantation The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China

2. Department of Thoracic Surgery Affiliated Hospital of Southwest Medical University Luzhou Sichuan 646000 China

3. Henan Province Engineering Research Center of molecular pathology and clinical experiment of thoracic diseases Zhengzhou Henan 450052 China

Abstract

AbstractFAM136A promotes the progression and metastasis of various tumors. However, there are few studies on the role of FAM136A in esophageal cancer (ESCA). The TCGA, GTEx, and GEO databases are employed to analyze the expression of FAM136A in ESCA, and qPCR and TMA experiments are performed for validation. Enrichment analyzes are performed to investigate the association of FAM136A expression with immune features, m6A modification, alternative splicing, cuproptosis, and the ceRNA network via bioinformatics analysis. FAM136A is highly expressed in ESCA and correlated with lymph node metastasis and overall survival (OS). Bioinformatics analysis suggested that FAM136A may participate in the following processes to promote ESCA development and progression: 1) Promotion of mast cells infiltration to influence the ESCA immune microenvironment, 2) HNRNPC upregulation to regulate m6A modification, 3) ALYREF upregulation to increase the occurrence of retained intron (RI) events, 4) CDK5RAP1 upregulation to achieve inhibition of tumor cell apoptosis, and 5) promotion of ESCA progression through the lncRNA SNHG15/hsa‐miR‐29c‐3p/FAM136A ceRNA network. FAM136A is a potential biomarker for ESCA diagnosis and treatment response evaluation, and the underlying mechanisms may be associated with immune infiltration, m6A modification, alternative splicing, cuproptosis, and the ceRNA regulatory network.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3