Novel machine‐learning prediction tools for overall survival of patients with chondrosarcoma: Based on recursive partitioning analysis

Author:

Yang Xiong‐Gang12,Yang Shan‐Shan3,Bao Yi12,Wang Qi‐Yang12,Peng Zhi12,Lu Sheng12ORCID

Affiliation:

1. Department of Orthopedics, The First People's Hospital of Yunnan Province The Affiliated Hospital of Kunming University of Science and Technology Kunming Yunnan China

2. The Key Laboratory of Digital Orthopedics of Yunnan Province Kunming Yunnan China

3. Department of Prosthodontics Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi Medical University Zunyi China

Abstract

AbstractBackgroundChondrosarcoma (CHS), a bone malignancy, poses a significant challenge due to its heterogeneous nature and resistance to conventional treatments. There is a clear need for advanced prognostic instruments that can integrate multiple prognostic factors to deliver personalized survival predictions for individual patients. This study aimed to develop a novel prediction tool based on recursive partitioning analysis (RPA) to improve the estimation of overall survival for patients with CHS.MethodsData from the Surveillance, Epidemiology, and End Results (SEER) database were analyzed, including demographic, clinical, and treatment details of patients diagnosed between 2000 and 2018. Using C5.0 algorithm, decision trees were created to predict survival probabilities at 12, 24, 60, and 120 months. The performance of the models was assessed through confusion scatter plot, accuracy rate, receiver operator characteristic (ROC) curve, and area under ROC curve (AUC).ResultsThe study identified tumor histology, surgery, age, visceral (brain/liver/lung) metastasis, chemotherapy, tumor grade, and sex as critical predictors. Decision trees revealed distinct patterns for survival prediction at each time point. The models showed high accuracy (82.40%–89.09% in training group, and 82.16%–88.74% in test group) and discriminatory power (AUC: 0.806–0.894 in training group, and 0.808–0.882 in test group) in both training and testing datasets. An interactive web‐based shiny APP (URL: https://yangxg1209.shinyapps.io/chondrosarcoma_survival_prediction/) was developed, simplifying the survival prediction process for clinicians.ConclusionsThis study successfully employed RPA to develop a user‐friendly tool for personalized survival predictions in CHS. The decision tree models demonstrated robust predictive capabilities, with the interactive application facilitating clinical decision‐making. Future prospective studies are recommended to validate these findings and further refine the predictive model.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3