Non‐canonical amino acid bioincorporation into antimicrobial peptides and its challenges

Author:

Enninful George Nkrumah1ORCID,Kuppusamy Rajesh1,Tiburu Elvis K.2,Kumar Naresh1,Willcox Mark D. P.1

Affiliation:

1. University of New South Wales Kensington New South Wales Australia

2. University of Ghana Accra Ghana

Abstract

The rise of antimicrobial resistance and multi‐drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large‐scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non‐canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid‐phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale‐up difficulties, and its non‐‘green’ nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid‐phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.

Publisher

Wiley

Subject

Organic Chemistry,Drug Discovery,Pharmacology,Molecular Biology,Molecular Medicine,General Medicine,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3