Comparison of Parameter Estimator Efficiency Levels of Path Analysis with Bootstrap and Jack Knife (Delete-5) Resampling Methods on Simulation Data

Author:

Fernandes Adji

Abstract

In practice, the assumptions of normality are often not met, this causes the estimation of the resulting parameters to be less efficient. Problems with the assumption that normality is not met can be overcome by resampling. The use of resampling allows data to be applied free from distribution assumptions. In this study, a simulation study was carried out by applying bootstrap resampling and jackknife resampling (delete-5) on path analysis assuming that the normality of the alignment was not met and the resampling amount set at 1000 with the degree of closeness between variables consisting of low closeness, medium closeness, high closeness and closeness level representing the level low to high closeness. Based on the simulation results, the resampling 1000 magnitude is able to overcome the problem of the assumptions of unmet normality. In addition, a comparison between bootstrap and jackknife resampling for conditions of side normality assumptions is not fulfilled and the closeness of the relationship between low, medium, high and closeness variables representing low to high closeness levels, the estimation results of path analysis parameters obtained by resampling jackknife are more efficient than resampling bootstrap.

Publisher

Hasanuddin University, Faculty of Law

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3