Recommendation System from Microsoft News Data using TF-IDF and Cosine Similarity Methods

Author:

Yunanda Gisela,Nurjanah Dade,Meliana Selly

Abstract

The rapidly growing information causes information overload, so news portals publish information massively. Readers need time to search and read more news, but the time relevance of news wears off quickly. A recommendation system is needed that can recommend news according to the preferences of readers. This study recommends news using the TF-IDF method. TF-IDF gives weight to each word in the news title, and then looks for similarity between stories using cosine similarity. To prove the accuracy of whether the system recommendation results were actually clicked by the reader, the recommendation results were matched with the reader's news history on the online news portal Microsoft News using a hit-rate. The hit-rate result in this study was 80.77%.

Publisher

Forum Kerjasama Pendidikan Tinggi (FKPT)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Trade Related Policy Text Classification and Quantification Based on TF-IDF Keyword Algorithm;2024 International Symposium on Intelligent Robotics and Systems (ISoIRS);2024-06-14

2. News recommendation model based on encoder graph neural network and bat optimization in online social multimedia art education;Computer Science and Information Systems;2024

3. StratGenius: Natural Language Processing-Based System To Determine Effective Influencer Marketing Strategies;2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON);2023-12-08

4. Optimizing Sports Center Recommendation System in Malaysia Through Content-Based Filtering Technique and Web Application;2023 IEEE 14th Control and System Graduate Research Colloquium (ICSGRC);2023-08-05

5. Content Matching for City Improvement;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3