Implementasi Bee Colony Optimization Pada Pemilihan Centroid (Klaster Pusat) Dalam Algoritma K-Means

Author:

Arfiani Ika,Yuliansyah Herman,Suratin Muhammad Dzikrullah

Abstract

Clustering is a method that is used to divide the data into several groups of parts. K-means (KM) is an algorithm that is often used in clustering, only just the result of KM often times get stuck in local optima i.e. the optimal solution (both maximum or minimal) on the candidate solution in the nearest neighbor only, not the whole of all existing solutions or what is commonly called the global optima. In this study aims to do improve the cluster determination process on the Kmeans algorithm using the Bee Colony Optimization (BCO) algorithm. BCO is an algorithm that works based on the way the bees search for food , BCO is famous for being able to escape from the local optima trap by recognizing which results are best from a series of optimal results . Combining BCO with KM begins with selecting a source of food early in random and using KM to resolve all the problems of clustering at every step BCO next and keep sources of food best in each iteration. The result of this research is that the BCOKM method has been proven to be able to solve the problem of data sharing, where the BCOKM method is able to form a good cluster, as shown by the resulting fitness value (the lowest value is 1221.53 and the highest value is 1233.28) all of which are better than the fitness value using K-means (1251.42). Likewise in terms of accuracy, where the use of BCOKM all showed better results (83.16%-83.30%) than the use of only K-means (83.09%)

Publisher

Forum Kerjasama Pendidikan Tinggi (FKPT)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3