Machine Learning Methods of Providing Informational Management Support for Students’ Professional Development

Author:

Zakharova I. G.1ORCID

Affiliation:

1. Tyumen State University

Abstract

Introduction.Professional development of students requires effective interaction with teachers, scientists, university administrators, students, representatives of professional community and labour market. The effectiveness of this interaction resulted from its information support, based on reliable information, promptly provided to all the members of learning process.The aim of this paper was to study the machine learning methods potential for the effective management of learning process by the example of implementing information support component designed to diagnose and predict the professional development of students based on automatic text analysis.Methodology and research methods. The theoretical basis of the research involved modelling of students’ professional development using the analysis of textual informative and professional relevance in written works of students. To identify the characteristics of professional development, a computer cluster analysis of texts was carried out using the K-means method of clustering. The Bayes method was used to construct a model for classifying students from the standpoint of identified features.Results and scientific novelty. A computer analysis of texts relating to different stages of learning for the evaluation of general and special vocabulary was performed. Regularities in the dynamics of students’ use of general scientific and professional terminology were revealed. Accordingly, the groups with certain trends of educational behaviour of students were formed. It was shown how this differentiation, based on the complex of previously selected dynamic indicators characterising the changes of professional vocabulary, expands the possibilities for diagnostics and forecasting of professional growth of students. The author notes that the efficiency of similar intellectual systems is determined not only by the continued database up-dating, i.e. the amount of data in turn influence the accuracy of model of students’ classification and, consequently, the forecast of students’ professional development. Equally important is the improvement of knowledge base, which contains the criteria of professional development and complies with the requirement of basic dictionaries relevance. In addition, supportive procedures should be carried out with participating of the representatives of professional community.Practical significance. The information support provided for the management of professional development of students can be used both for operational decision making and developing content and technologies for educational process. This means students can evaluate the dynamics of own performance in comparison with earlier works, classmates’ work, target indicators of the use of general scientific and professional terminology. This information management component allows teachers to monitor the content of texts and easily determine the authorship of content of learner’s general frequency vocabulary and the dynamics of its change. The representatives of labour market along with access to information on the current progress of a student can define his or her prospects as a future worker. Heads of educational programmes, university administrators receive objective information about the content of disciplines as their study is reflected in the students’ professional development.

Publisher

Russian State Vocational Pedagogical University

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Education

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3