General Pharmacology of Clozapine

Author:

Coward D. M.

Abstract

Clozapine shows neuroleptic-like inhibition of locomotor activity and conditioned avoidance responding in rodents, although tolerance develops on repeated treatment. EEG-based studies show strong arousal-inhibiting activity of clozapine as well as neuroleptic-like effects on both caudate spindle duration and rat sleep-waking patterns. Effects such as apomorphine blockade, catalepsy and strong increases of plasma prolactin levels are not seen, however, and chronic treatment does not lead to dopamine D2 receptor supersensitivity. Binding studies show clozapine's highest affinities to be for dopamine D4, 5-HT1c, 5-HT2, α1, muscarinic and histamine H1 receptors, but moderate affinity is also seen for many other receptor subtypes. Microdialysis studies indicate a preferential interaction with striatal D1 receptors, whereas autoradiographical studies indicate upregulation of D1 and downregulation of 5-HT2 receptors after chronic clozapine. Clarification of the mechanisms underlying clozapine's special attributes is often hampered by a failure to examine compounds which show a close chemical relationship to clozapine, but which produce extrapyramidal side-effects in man, such as clothiapine, loxapine and amoxapine.

Publisher

Royal College of Psychiatrists

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3