Measuring neuropsychiatric symptoms in patients with early cognitive decline using speech analysis

Author:

König AlexandraORCID,Mallick Elisa,Tröger Johannes,Linz NicklasORCID,Zeghari RadiaORCID,Manera Valeria,Robert Philippe

Abstract

Abstract Background Certain neuropsychiatric symptoms (NPS), namely apathy, depression, and anxiety demonstrated great value in predicting dementia progression, representing eventually an opportunity window for timely diagnosis and treatment. However, sensitive and objective markers of these symptoms are still missing. Therefore, the present study aims to investigate the association between automatically extracted speech features and NPS in patients with mild neurocognitive disorders. Methods Speech of 141 patients aged 65 or older with neurocognitive disorder was recorded while performing two short narrative speech tasks. NPS were assessed by the neuropsychiatric inventory. Paralinguistic markers relating to prosodic, formant, source, and temporal qualities of speech were automatically extracted, correlated with NPS. Machine learning experiments were carried out to validate the diagnostic power of extracted markers. Results Different speech variables are associated with specific NPS; apathy correlates with temporal aspects, and anxiety with voice quality—and this was mostly consistent between male and female after correction for cognitive impairment. Machine learning regressors are able to extract information from speech features and perform above baseline in predicting anxiety, apathy, and depression scores. Conclusions Different NPS seem to be characterized by distinct speech features, which are easily extractable automatically from short vocal tasks. These findings support the use of speech analysis for detecting subtypes of NPS in patients with cognitive impairment. This could have great implications for the design of future clinical trials as this cost-effective method could allow more continuous and even remote monitoring of symptoms.

Publisher

Royal College of Psychiatrists

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3