Abstract
Abstract
Background
The fight against the COVID-19 pandemic seems to encompass a social media debate, possibly resulting in emotional contagion and the need for novel surveillance approaches. In the current study, we aimed to examine the flow and content of tweets, exploring the role of COVID-19 key events on the popular Twitter platform.
Methods
Using representative freely available data, we performed a focused, social media-based analysis to capture COVID-19 discussions on Twitter, considering sentiment and longitudinal trends between January 19 and March 3, 2020. Different populations of users were considered. Core discussions were explored measuring tweets’ sentiment, by both computing a polarity compound score with 95% Confidence Interval and using a transformer-based model, pretrained on a large corpus of COVID-19-related Tweets. Context-dependent meaning and emotion-specific features were considered.
Results
We gathered 3,308,476 tweets written in English. Since the first World Health Organization report (January 21), negative sentiment proportion of tweets gradually increased as expected, with amplifications following key events. Sentiment scores were increasingly negative among most active users. Tweets content and flow revealed an ongoing scenario in which the global emergency seems difficult to be emotionally managed, as shown by sentiment trajectories.
Conclusions
Integrating social media like Twitter as essential surveillance tools in the management of the pandemic and its waves might actually represent a novel preventive approach to hinder emotional contagion, disseminating reliable information and nurturing trust. There is the need to monitor and sustain healthy behaviors as well as community supports also via social media-based preventive interventions.
Publisher
Royal College of Psychiatrists
Subject
Psychiatry and Mental health
Reference31 articles.
1. Digital Emotion Contagion
2. The psychological effects of quarantining a city
3. Coronavirus: the spread of misinformation
4. [10] Müller, M , Salathé, M , Kummervold, PE . COVID-Twitter-BERT: a natural language processing model to analyse COVID-19 content on Twitter. arXiv preprint 2020 arXiv:2005.07503.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献