Algorithmic fairness in precision psychiatry: analysis of prediction models in individuals at clinical high risk for psychosis

Author:

Şahin DeryaORCID,Kambeitz-Ilankovic LanaORCID,Wood Stephen,Dwyer Dominic,Upthegrove Rachel,Salokangas Raimo,Borgwardt Stefan,Brambilla Paolo,Meisenzahl Eva,Ruhrmann Stephan,Schultze-Lutter FraukeORCID,Lencer Rebekka,Bertolino Alessandro,Pantelis Christos,Koutsouleris NikolaosORCID,Kambeitz JosephORCID,

Abstract

BackgroundComputational models offer promising potential for personalised treatment of psychiatric diseases. For their clinical deployment, fairness must be evaluated alongside accuracy. Fairness requires predictive models to not unfairly disadvantage specific demographic groups. Failure to assess model fairness prior to use risks perpetuating healthcare inequalities. Despite its importance, empirical investigation of fairness in predictive models for psychiatry remains scarce.AimsTo evaluate fairness in prediction models for development of psychosis and functional outcome.MethodUsing data from the PRONIA study, we examined fairness in 13 published models for prediction of transition to psychosis (n = 11) and functional outcome (n = 2) in people at clinical high risk for psychosis or with recent-onset depression. Using accuracy equality, predictive parity, false-positive error rate balance and false-negative error rate balance, we evaluated relevant fairness aspects for the demographic attributes ‘gender’ and ‘educational attainment’ and compared them with the fairness of clinicians’ judgements.ResultsOur findings indicate systematic bias towards assigning less favourable outcomes to individuals with lower educational attainment in both prediction models and clinicians’ judgements, resulting in higher false-positive rates in 7 of 11 models for transition to psychosis. Interestingly, the bias patterns observed in algorithmic predictions were not significantly more pronounced than those in clinicians’ predictions.ConclusionsEducational bias was present in algorithmic and clinicians’ predictions, assuming more favourable outcomes for individuals with higher educational level (years of education). This bias might lead to increased stigma and psychosocial burden in patients with lower educational attainment and suboptimal psychosis prevention in those with higher educational attainment.

Publisher

Royal College of Psychiatrists

Subject

Psychiatry and Mental health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precision psychiatry: predicting predictability;Psychological Medicine;2024-03-18

2. Computational psychiatry and AI - High hopes: heralded heights or hollow hype?;Developments in Neuroethics and Bioethics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3