Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach

Author:

Cearns MicahORCID,Amare Azmeraw T.ORCID,Schubert Klaus Oliver,Thalamuthu Anbupalam,Frank Joseph,Streit Fabian,Adli Mazda,Akula Nirmala,Akiyama Kazufumi,Ardau Raffaella,Arias Bárbara,Aubry Jean-Michel,Backlund Lena,Bhattacharjee Abesh Kumar,Bellivier Frank,Benabarre Antonio,Bengesser Susanne,Biernacka Joanna M.,Birner Armin,Brichant-Petitjean Clara,Cervantes Pablo,Chen Hsi-ChungORCID,Chillotti Caterina,Cichon Sven,Cruceanu Cristiana,Czerski Piotr M.,Dalkner Nina,Dayer Alexandre,Degenhardt Franziska,Zompo Maria Del,DePaulo J. Raymond,Étain BrunoORCID,Falkai Peter,Forstner Andreas J.,Frisen Louise,Frye Mark A.,Fullerton Janice M.,Gard Sébastien,Garnham Julie S.,Goes Fernando S.,Grigoroiu-Serbanescu Maria,Grof Paul,Hashimoto Ryota,Hauser Joanna,Heilbronner Urs,Herms Stefan,Hoffmann Per,Hofmann Andrea,Hou Liping,Hsu Yi-Hsiang,Jamain Stephane,Jiménez Esther,Kahn Jean-Pierre,Kassem Layla,Kuo Po-Hsiu,Kato Tadafumi,Kelsoe John,Kittel-Schneider Sarah,Kliwicki Sebastian,König Barbara,Kusumi Ichiro,Laje Gonzalo,Landén Mikael,Lavebratt CatharinaORCID,Leboyer Marion,Leckband Susan G.,Maj Mario,Manchia Mirko,Martinsson Lina,McCarthy Michael J.ORCID,McElroy Susan,Colom Francesc,Mitjans Marina,Mondimore Francis M.,Monteleone PalmieroORCID,Nievergelt Caroline M.,Nöthen Markus M.,Novák Tomas,O'Donovan Claire,Ozaki Norio,Millischer Vincent,Papiol Sergi,Pfennig Andrea,Pisanu Claudia,Potash James B.,Reif Andreas,Reininghaus Eva,Rouleau Guy A.,Rybakowski Janusz K.,Schalling Martin,Schofield Peter R.,Schweizer Barbara W.,Severino Giovanni,Shekhtman Tatyana,Shilling Paul D.,Shimoda Katzutaka,Simhandl Christian,Slaney Claire M.,Squassina Alessio,Stamm Thomas,Stopkova Pavla,Tekola-Ayele Fasil,Tortorella Alfonso,Turecki Gustavo,Veeh Julia,Vieta Eduard,Witt Stephanie H.,Roberts GloriaORCID,Zandi Peter P.,Alda MartinORCID,Bauer Michael,McMahon Francis J.,Mitchell Philip B.,Schulze Thomas G.,Rietschel Marcella,Clark Scott R.,Baune Bernhard T.,

Abstract

BackgroundResponse to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment.AimsTo use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder.MethodThis study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework.ResultsThe best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data.ConclusionsUsing PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.

Funder

Grantová Agentura České Republiky

NIH Clinical Center

Deutsche Forschungsgemeinschaft

Canadian Institutes of Health Research

Publisher

Royal College of Psychiatrists

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3