Predicting patients who will drop out of out-patient psychotherapy using machine learning algorithms

Author:

Bennemann BjörnORCID,Schwartz Brian,Giesemann JuliaORCID,Lutz Wolfgang

Abstract

BackgroundAbout 30% of patients drop out of cognitive–behavioural therapy (CBT), which has implications for psychiatric and psychological treatment. Findings concerning drop out remain heterogeneous.AimsThis paper aims to compare different machine-learning algorithms using nested cross-validation, evaluate their benefit in naturalistic settings, and identify the best model as well as the most important variables.MethodThe data-set consisted of 2543 out-patients treated with CBT. Assessment took place before session one. Twenty-one algorithms and ensembles were compared. Two parameters (Brier score, area under the curve (AUC)) were used for evaluation.ResultsThe best model was an ensemble that used Random Forest and nearest-neighbour modelling. During the training process, it was significantly better than generalised linear modelling (GLM) (Brier score: d = –2.93, 95% CI (−3.95, −1.90)); AUC: d = 0.59, 95% CI (0.11 to 1.06)). In the holdout sample, the ensemble was able to correctly identify 63.4% of cases of patients, whereas the GLM only identified 46.2% correctly. The most important predictors were lower education, lower scores on the Personality Style and Disorder Inventory (PSSI) compulsive scale, younger age, higher scores on the PSSI negativistic and PSSI antisocial scale as well as on the Brief Symptom Inventory (BSI) additional scale (mean of the four additional items) and BSI overall scale.ConclusionsMachine learning improves drop-out predictions. However, not all algorithms are suited to naturalistic data-sets and binary events. Tree-based and boosted algorithms including a variable selection process seem well-suited, whereas more advanced algorithms such as neural networks do not.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Royal College of Psychiatrists

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3