Effect of the interaction of components in a nickel-molybdenum catalyst on its activity in decomposition of methane to hydrogen

Author:

Makayeva NursayaORCID,Yergaziyeva GaukharORCID,Anisova MoldirORCID,Shaimerden ZhannaORCID,Dossumov KusmanORCID

Abstract

This work is devoted to the study of the activity of monometallic (Fe/Al2O3) and bimetallic (Fe-Mo/Al2O3) catalysts supported to carrier γ- Al2O3. It has been discovered that the bimetallic catalyst is more active than the monometallic catalyst in the methane decomposition reaction. The results of the influence of molybdenum oxide on the activity of Fe/Al2O3 catalyst in the methane decomposition reaction in the temperature range 500-850°C have been obtained. It has been determined that the addition of molybdenum oxide in the amount of 5 wt. % of the iron catalyst composition leads to an increase in the catalytic activity of the sample in the reaction of methanedecomposition to hydrogen at relatively low temperatures. Compared to Fe/Al2O3 on the FeMo/Al2O3 catalyst at a reaction temperature of 750°C, methane conversionincreases from 8% to 98%, hydrogen yield from 5% to 57%. The increased field of activity Fe-Mo/Al2O3catalyst in the decomposition of methane to hydrogen compared to Fe/Al2O3 catalysts is due to an increase in the dispersity of the active phases of the catalyst, as well as the formation of an easily reduced Fe2(MоО4)3 phase, according to XRD, TPR-H2, and BET methods.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

Center of Physical Chemical Methods of Research and Analysis

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3