Kinetic parameters of thermal destruction of the copolymer of polyethylene glycol fumarate with acrylic acid in inert medium

Author:

Burkeev MeyramORCID,Bolatbay AbylaikhanORCID,Havlicek DavidORCID,Tazhbayev YerkeblanORCID,Davrenbekov SantayORCID,Zhaparova LyazzatORCID

Abstract

Thermal decomposition of the copolymer of polyethylene glycol fumarate with acrylic acid (p-EGF:AA) of two different compositions synthesized earlier was studied in the present work. TG and DTG curves prove that decomposition takes place in several stages. According to thermogravimetric curves it has been found out that for the copolymer with higher content of acrylic acid the decomposition of the copolymer’s sample is started at higher temperatures. It has been shown the shift of the temperature of decomposition’s start to the higher area with the increase of heating rate which is necessary for the detorsion of macromolecular coil. Experimental data processed using graphical methods of Kissinger–Akahira–Sunose and Friedman allowed us to calculate the activation energy of the thermal decomposition process. It has been established that the copolymer with the composition of 21.03:78.97 mass.% has lower meaning of activation energy than the one with the composition of 68.96:31.04 mass.%. As a result of calculation one can see that the meanings found out using these methods depend slightly on conversion. Using Achar-Brindley-Sharp method and the method of invariant kinetic parameters the kinetic triplet of the decomposition process has been found which was used to build the calculated curve. The dependences of g(α) on α using these parameters showed a satisfactory agreement of calculated curves with the experimental ones. One can conclude that the decomposition process of the copolymer of polyethylene glycol fumarate with acrylic acid is well described with of D3 (three-dimensional diffusion) model.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

Center of Physical Chemical Methods of Research and Analysis

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3