Misuse of large language models: Exploiting weaknesses for target-specific outputs

Author:

Klinkhammer DennisORCID

Abstract

Prompt engineering in large language models (LLMs) in combination with external context can be misused for jailbreaks in order to generate malicious outputs. In the process, jailbreak prompts are apparently amplified in such a way that LLMs can generate malicious outputs on a large scale despite their initial training. As social bots, these can contribute to the dissemination of misinformation, hate speech, and discriminatory content. Using GPT4-x-Vicuna-13b-4bit from NousResearch, we demonstrate in this article the effectiveness of jailbreak prompts and external contexts via Jupyter Notebook based on the Python programming language. In addition, we highlight the methodological foundations of prompt engineering and its potential to create malicious content in order to sensitize researchers, practitioners, and policymakers to the importance of responsible development and deployment of LLMs.

Publisher

Oekom Publishers GmbH

Reference31 articles.

1. Agrawal, Sweta; Zhou, Chunting; Lewis, Mike; Zettlemoyer, Luke; Ghazvininejad, Marjan (2023): In-context examples selection for machine translation. In: arxiv.org, 05. 12. 2022. https://doi.org/10.48550/arXiv.2212.02437

2. Arora, Simran et al. (2023): Ask me anything. A simple strategy for prompting language models. In: arxiv.org, 05. 10. 2022. https://doi.org/10.48550/arXiv.2210.02441

3. Ba, Jimmy; Kiros, Jamie; Hinton, Geoffrey (2016): Layer normalization. In: arxiv.org, 21. 06. 2016. https://doi.org/10.48550/arXiv.1607.06450

4. Birhane, Adeba; Kasirzadeh, Atoosa; Leslie, David; Wachter, Sandra (2023): Science in the age of large language models. In: Nature Reviews Physics 5 (5), pp. 277–280. https://doi.org/10.1038/s42254-023-00581-4

5. Chen, Canyu; Shu, Kai (2023): Can LLM-generated misinformation be detected? In: arxiv.org, 25. 09. 2023. https://doi.org/10.48550/arXiv.2309.13788

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3