Testing the use of an analytical and mechanistic C3 - biomass accumulation model for precision fertilization

Author:

Hakojärvi Mikko,Hautala Mikko,Alakukku Laura

Abstract

A single and uniform fertilizer application may lead to ineffective crop nutrient uptake and use. In order to enhance nutrient use efficiency the application should be adjusted according to the need of the cultivated crop. This task is challenging because weather is unknown and unpredictable over the upcoming growing season. One solution is site-specific fertilizer application in several separate events throughout the season. Such a precision fertilization method requires information on the current crop state (e.g. the availability of water and nutrients in the soil) and a crop growth model that aims to assess current crop growth and near future needs. A field experiment with varying radiation, precipitation and nutrient conditions was established to test our crop growth model performance. Spring wheat (Triticum aestivum L.) was grown using three fertilization rates with three precipitation and two radiation treatments within each fertilization treatment. The observed crop biomass accumulation in the highest fertilization treatment was considered as the highest possible in the prevailing conditions. The simulated (maximal) biomass accumulation was in agreement with the highest observed biomass yield. The results were found promising for further use of the model in crop growth evaluation during the growing season.

Publisher

Agricultural and Food Science

Subject

Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3