Abstract
Оценка перспективности использования клонов гибридных пород древесины является одной из актуальных задач для повышения эффективности плантационного лесовыращивания. Одним из перспективных путей решения данной задачи является применение искусственных нейронных сетей (ИНС). Настоящая научная работа является одной из немногих, где применяется ИНС для решения подобных задач в лесном хозяйстве. Для обучения нейронных сетей и определения перспективности использования клонов гибридных пород древесины для плантационного лесовыращивания были взяты биометрические данные клонов гибридной осины 2018 г. В ходе выполнения работы были построены две ИНС, где архитектура первой сети включает входной слой из 3 нейронов, 1 скрытый слой с 6 нейронами и выходной слой из 1 нейрона; архитектура второй сети включает в себя входной слой из 3 нейронов, 2 скрытых слоя по 6 нейронов и выходной слой из 1 нейрона, в которые были загружены нормализованные исходные биометрические данные для обучения определения перспективности использования клонов гибридных пород древесины для плантационного лесовыращивания. По результатам данного исследования была составлена сравнительная характеристика точности ИНС 1 и ИНС 2, которая показала, что ИНС 1 более точная, так как её отклонение на 3,49% меньше ИНС 2. Результаты настоящей работы подтвердили перспективность применения ИНС для оценки использования клонов гибридных пород древесины для плантационного лесовыращивания. По оценке расчётной перспективности ИНС 1 для плантационного лесовыращивания были выявлены клоны гибридных пород древесины VTI, ESCH3, ESCH5. Внедрение ИНС в отрасль лесного хозяйства упрощает оценку результатов биометрических показателей древесины, особенно для начинающих специалистов, что обеспечивает последующую точную оценку перспективности пород древесины.
Assessing the prospects of using hybrid wood clones is one of the urgent tasks to improve the efficiency of plantation silviculture. One of the promising ways to solve this problem is the use of artificial neural networks (ANN). This research work is one of the few where ANN are used to solve such problems in forestry. Biometric data from 2018 hybrid aspen clones were taken to train neural networks and determine the potential use of hybrid wood clones for plantation silviculture. During this work, two ANNs were constructed where the architecture of the first network includes an input layer of 3 neurons, 1 hidden layer with 6 neurons and an output layer of 1 neuron, the architecture of the second network includes an input layer of 3 neurons, 2 hidden layers of 6 neurons and an output layer of 1 neuron, into which the normalized input biometric data were loaded for learning to determine the prospective use of hybrid wood species clones for plantation silviculture. Based on the results of this study, a comparison of the accuracy of ANN 1 and ANN 2 was made, which showed that ANN 1 was more accurate because its bias was 3,49% less than ANN 2. The results of this work confirmed the promise of using ANN to evaluate the use of hybrid wood clones for plantation reforestation. According to the evaluation of the calculated promisingness of ANN 1 for plantation silviculture, VTI, ESCH3 and ESCH5 hybrid wood clones were identified. The introduction of ANN in the forestry industry simplifies the evaluation of wood biometric results, especially for beginners, which provides a subsequent accurate assessment of the perspective of wood species.
Publisher
Cifra Ltd - Russian Agency for Digital Standardization (RADS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献