Progress in Artificial Intelligence-based Prediction of Concrete Performance
Author:
Affiliation:
1. College of Architecture and environment, Sichuan University, Chengdu 610065, China.
2. Shanghai Jiao Tong University, Shanghai 200240, China.
Publisher
Japan Concrete Institute
Subject
General Materials Science,Building and Construction
Link
https://www.jstage.jst.go.jp/article/jact/19/8/19_924/_pdf
Reference85 articles.
1. 1) Abellán-García, J., (2021). “Artificial neural network model for strength prediction of ultra-high-performance concrete.” ACI Materials Journal, 118(4), 3-14.
2. 2) Adeli, H. and Paek, A. Y. J., (1986). “Computer-aided design of structures using LISP.” Computers & Structures, 22(6), 939-956.
3. 3) Adeli, H. and Yeh, C., (1989). “Perceptron learning in engineering design.” Computer-Aided Civil & Infrastructure Engineering, 4(4), 247-256.
4. 4) Ahangar Asr, A., Faramarzi, A., Javadi, A. A. and Giustolisi, O., (2011). “Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression.” Engineering Computations, 28(4), 492-507.
5. 5) Ahangar-Asr, A., Faramarzi, A., Javadi, A. A. and Giustolisi, O., (2013). “Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression.” Engineering Computations, 28(4), 492-507.
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of time-dependent concrete mechanical properties based on advanced deep learning models considering complex variables;Case Studies in Construction Materials;2024-12
2. Prediction of concrete and FRC properties at high temperature using machine and deep learning: A review of recent advances and future perspectives;Journal of Building Engineering;2024-04
3. Revolutionizing concrete analysis: An in-depth survey of AI-powered insights with image-centric approaches on comprehensive quality control, advanced crack detection and concrete property exploration;Construction and Building Materials;2024-01
4. Mixture Design for Lightweight Geopolymer Concrete;ACI Materials Journal;2024
5. Prediction of Time-Dependent Concrete Mechanical Properties Based on Advanced Deep Learning Models Considering Complex Variables;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3