Abstract
Let $\mathfrak{M}$ be a free metabelian Leibniz algebra generating set $%
X=\{x_{1},...,x_{n}\}$ over the field $K$ of characteristic $0$. An automorphism $ \phi $ of $\mathfrak{M}$ is said to be normal automorphism if each ideal of $\mathfrak{M}$ is invariant under $ \phi $. In this work, it is proven that every normal automorphism of $\mathfrak{M}$ is an IA-automorphism and the group of normal automorphisms coincides with the group of inner automorphisms.
Publisher
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
Reference19 articles.
1. Abdykhalykov, A. T., Mikhalev, A. A., Umirbaev, U. U., Automorphisms of two-generated free Leibniz algebras, Comm. Algebra, 29(7) (2001), 2953-2960. https://doi.org/10.1081/AGB-4998
2. Bloh, A., A generalization of the concept of a Lie algebra, Dokl. Akad. Nauk SSSR, 165(3) (1965), 471-473. English translation: Sov. Math., Dokl., 6 (1965), 1450-1452.
3. Drensky, V., Cattaneo, G. M. P., Varieties of metabelian Leibniz algebras, Journal of Algebra and Its Appl., 1(1) (2002), 31-50. https://doi.org/10.1142/S0219498802000033
4. Endimioni, G., Normal automorphisms of a free metabelian nilpotent group, Glasgow Math. J., 52 (2010), 169-177. https://doi.org/10.1017/S0017089509990267
5. Jarden, M., Ritter, J., Normal automorphisms of absolute Galois groups of p-adic fields, Duke Math. J., 47 (1980). https://doi.org/10.1215/S0012-7094-80-04705-5