A-statistically localized sequences in n-normed spaces

Author:

GÜRDAL Mehmet,SARI Nur,SAVAŞ Ekrem

Publisher

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Subject

General Medicine

Reference2 articles.

1. R1: Connor, B. J., The statistical and strong p-Cesaro convergence of sequences, Analysis (Munich), 8 (1988), 47-63. R2: Connor, J. and Kline, J., On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl., 197 (1996), 392-399. R3 : Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. R4: Fridy, J. A., On statistical convergence, Analysis (Munich), 5 (1985), 301-313. R5 : Gähler, S., 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115-148. R6 : Gähler, S., Lineare 2-normierte räume, Math. Nachr., 28(1-2) (1964), 1-43. R7 : Gähler, S., Untersuchungen über verallgemeinerte m-metrische räume. I., Math. Nachr., 40(1-3) (1969), 165-189 R8 : Gähler, S., Siddiqi, A. H. and Gupta, S.C., Contributions to non-archimedean functional analysis, Math. Nachr., 69 (1963), 162-171. R9 : Gunawan, H., and Mashadi, On n-normed Spaces, Int. J. Math. Sci., 27(10) (2001), 631-639. R10: Gürdal, M. and Pehlivan, S., The statistical convergence in 2-Banach spaces, Thai. J. Math., 2(1) (2004), 107-113. R11: Gürdal, M. and Pehlivan, S., The statistical convergence in 2-normed spaces, Southeast Asian Bull. Math., 33(2) (2009), 257-264. R12: Gürdal, M. and Açık, I., On I-cauchy sequences in 2-normed spaces, Math. Inequal. Appl., 11(2) (2008), 349-354. R13: Gürdal, M. and Şahiner, A., Statistical approximation with a sequence of 2-Banach spaces, Math. Comput. Modelling, 55(3-4) (2012), 471-479. R14: Gürdal, M., Şahiner, A. and Açık, I., Approximation theory in 2-Banach spaces, Nonlinear Anal., 71(5-6) (2009), 1654-1661. R15: Gürdal, M. and Yamancı, U., Statistical convergence and some questions of operator theory, Dynam. Syst. Appl., 24 (2015), 305-312. R16: Kolk, E., The statistical convergence in Banach spaces, Acta et Commentationes Universitatis Tartuensis, 928 (1991), 41-52. R17: Krivonosov, L. N., Localized sequences in metric spaces, Izv. Vyssh. Uchebn. Zaved. Mat., 4 (1974), 45-54

2. Soviet Math. (Iz. VUZ), 18(4), 37-44. R18: Mohiuddine, S. A., Şevli, H. and Cancan, M., Statistical convergence in fuzzy 2-normed space, J. Comput. Anal. Appl., 12(4) (2010), 787-798. R19: Mohiuddine, S. A. and Alamri, B. A. S., Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, 113 (2019), 1955-1973. R20: Mursaleen, M., On statistical convergence in random 2-normed spaces, Acta Sci. Math. (Szeged), 76 (2010), 101-109. R21: Nabiev, A. A., Savaş, E. and Gürdal, M., Statistically localized sequences in metric spaces. J. App. Anal. Comp., 9(2) (2019), 739-746. R22: Nabiev, A. A., Savaş, E. and Gürdal, M., I-localized sequences in metric spaces, Facta Univ. Ser. Math. Inform., (2019), (to appear). R23: Rath, D. and Tripathy, B.C., On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math., 25(4) (1994), 381-386. R24: Raymond, W. F. and Cho, Ye. J., Geometry of linear 2-normed spaces, Huntington, N.Y. Nova Science Publishers, 2001. R25: Šalát, T., On statistically convergent sequences of real numbers, Mathematica Slovaca, 30(2) (1980), 139-150. R26: Savaş, R., and Sezer, S. A., Tauberian theorems for sequences in 2-normed spaces, Results Math., 72 (2017), 1919-1931. R27: Savaş, E., A-statistical convergence of order α via ϕ-function, Appl. Anal. Discrete Math., 13 (2019), 918-926. R28: Savaş, E. and Gürdal, M., Ideal convergent function sequences in random 2-normed spaces, Filomat, 30(3) (2016), 557-567. R29: Şahiner, A., Gürdal, M. and Yiğit, T., Ideal convergence characterization of the completion of linear n-normed spaces, Comput. Math. Appl., 61(3) (2011), 683-689. R30: Siddiqi, A. H., 2-normed spaces, Aligarh Bull. Math., (1980), 53-70. R31: Vulich, B., On a generalized notion of convergence in a Banach space, Ann. Math., 38(1) (1937), 156-174. R32: Yamancı, U. and Gürdal, M., Statistical convergence and operators on Fock space, New York J. Math., 22 (2016), 199-207. R33: Yamancı, U., Nabiev, A. A. and Gürdal, M., Statistically localized sequences in 2-normed spaces, Honam Math. J., (2019), (to appear). R34: Yamancı, U., Savaş, E. and Gürdal, M., I-localized sequences in 2-normed spaces, Malays. J. Math. Sci., (2019), (to appear). R35: Yegül, S. and Dündar, E., On statistical convergence of sequences of functions in 2-normed spaces, J. Classical Anal., 10(1) (2017), 49-57. R36: Yegül, S. and Dündar, E., Statistical convergence of double sequences of functions and some properties in 2-normed spaces, Facta Univ. Ser. Math. Inform., 33(5) (2018), 705-719.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study on \(\mathcal{I}\)-localized Sequences in \(S\)-metric Spaces;Communications in Mathematics and Applications;2023-05-06

2. Orlicz-lacunary convergent triple sequences and ideal convergence;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2022-06-30

3. Hibrid Δ-Statistical Convergence for Neutrosophic Normed Space;Journal of Mathematics;2022-06-11

4. An investigation on the triple ideal convergent sequences in fuzzy metric spaces;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2022-03-31

5. ON ASYMPTOTICALLY LACUNARY STATISTICAL EQUIVALENT TRIPLE SEQUENCES VIA IDEALS AND ORLICZ FUNCTION;HONAM MATH J;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3