Affiliation:
1. RECEP TAYYIP ERDOGAN UNIVERSITY
2. AKDENIZ UNIVERSITY
Abstract
Split-complex (hyperbolic) numbers are ordered pairs of real numbers, written in the form $x+jy$ with $j^{2}=-1$, used to describe the geometry of the Lorentzian plane. Since a null split-complex number does not have an inverse, some methods to calculate the exponential of complex matrices are not valid for split-complex matrices. In this paper, we examined the exponential of a $2x2$ split-complex matrix in three cases : $i:~\Delta=0,~ii:~\Delta\neq0$ and $\Delta$ is not null split-complex number, $iii:~\Delta\neq0$ and $\Delta$ is a null split-complex number where $\Delta=(trA)^{2}-4detA$.
Publisher
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
Reference29 articles.
1. Ablamowicz, R., Matrix exponential via Clifford algebras, Journal of Nonlinear Mathematical Physics, 5(3) (1998), 294-313. doi: 10.2991/jnmp.1998.5.3.5
2. Baker, A., Matrix Groups: An Introduction to Lie Group Theory, Springer Science & Business Media, 2012. doi: 10.1007/978-1-4471-0183-3
3. Bernstein, D. S., Orthogonal matrices and the matrix exponential, SIAM Review, 32(4) (1990), 673. doi: 10.1137/1032130
4. Bernstein, D. S., So, W., Some explicit formulas for the matrix exponential, IEEE Transactions on Automatic Control, 38(8) (1993), 1228-1232. doi: 10.1109/9.233156
5. Borota, N. A., Flores, E., Osler, T. J., Spacetime numbers the easy way, Mathematics and Computer Education, 34(2) (2000), 159.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Abel Theory of Power Series in Split-Complex Analysis;Highlights in Science, Engineering and Technology;2023-07-27