Abstract
We presented some monotonicity properties for the k-generalized digamma function $\psi_{k}(h)$ and we established some new bounds for $\psi_{k}^{(s)}(h),$ $s\in \mathbb{N}\cup\{0\},$ which refine recent results
Publisher
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
Reference20 articles.
1. Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965.
2. Batir, N., Sharp bounds for the psi function and harmonic numbers, Math. Inequal.Appl, 14(4) (2011), 917-925. http://files.ele-math.com/abstracts/mia-14-77-abs.pdf
3. Coffey, M. W., One integral in three ways: moments of a quantum distribution, J. Phys. A: Math. Gen., 39 (2006), 1425-1431. https://doi.org/10.1088/0305-4470/39/6/015
4. Diaz, R., Pariguan, E., On hypergeometric functions and k−Pochhammer symbol, Divulg. Mat., 15(2) (2007), 179-192. https://doi.org/10.48550/arXiv.math/0405596
5. Guo, B.-N., Qi, F., Sharp inequalities for the psi function and harmonic numbers, Analysis, 34(2) (2014), 201-208. DOI 10.1515/anly-2014-0001.