Abstract
In this study, we define (1,3)-Bertrand-direction curve and (1,3)-Bertrand-donor curve in the 4-dimensional Euclidean space $E^{4}$. We introduce necessary and sufficient conditions for a special Frenet curve to have a (1,3)-Bertrand-direction curve. We introduce the relations between Frenet vectors and curvatures of these direction curves. Furthermore, we investigate whether (1,3)-evolute-donor curves in $E^{4}$ exist and show that there is no (1,3)-evolute-donor curve in $E^{4}$ .
Publisher
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
Reference18 articles.
1. Bertrand, J., Memoire sur la theorie des courbes a double courbure, Comptes Rendus 36, Journal de Mathematiques Pures et Appliquees., 15 (1850), 332-350.
2. Choi, J.H., Kim, Y.H., Associated curves of a Frenet curve and their applications, Applied Mathematics and Computation, 218 (2012), 9116-9124. https://doi.org/10.1016/j.amc.2012.02.064
3. Fuchs, D., Evolutes and involutes of spatial curves, American Mathematical Monthly, 120(3) (2013), 217-231. https://doi.org/10.4169/amer.math.monthly.120.03.217
4. Fukunaga, T., Takahashi, M., Evolutes and involutes of frontals in the euclidean plane, Demonstratio Mathematica, 48(2) (2015), 147-166. https://doi.org/10.1515/dema-2015-0015
5. Fukunaga, T., Takahashi, M., Involutes of fronts in the Euclidean plane, Beitrage zur Algebra und Geometrie/Contributions to Algebra and Geometry, 57(3) (2016), 637-653.
https://doi.org/10.1007/s13366-015-0275-1