Affiliation:
1. NEVSEHIR HACI BEKTAS VELI UNIVERSITY
Abstract
The Hybrid numbers are generalizations of complex, hyperbolic and dual numbers. In recent years, studies related with hybrid numbers have been increased significantly. In this paper, we introduce the generalized bivariate conditional Fibonacci and Lucas hybrinomials. Also, we present the Binet formula, generating functions, some significant identities, Catalan’s identities and Cassini’s identities of the generalized bivariate conditional Fibonacci and Lucas hybrinomials. Finally, we give more general results compared to the previous works.
Publisher
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
Reference18 articles.
1. Ait-Amrane, N. R., Belbachir, H., Bi-periodic r-Fibonacci sequence and bi-periodic r-Lucas sequence of type s, Hacettepe Journal of Mathematics and Statistics, 51 (3) (2022), 680–699. https://dx.doi.org/10.15672/hujms.825908.
2. Ait-Amrane, N. R., Belbachir, H., Tan, E., On generalized Fibonacci and Lucas hybrid polynomials, Turkish Journal of Mathematics, 46 (6) (2022), 2069–2077. https://dx.doi.org/10.55730/1300-0098.3254.
3. Bala, A., Verma, V., Some properties of bi-variate bi-periodic Lucas polynomials, Annals of the Romanian Society for Cell Biology (2021), 8778–8784.
4. Belbachir, H., Bencherif, F., On some properties on bivariate Fibonacci and Lucas polynomials, arXiv preprint arXiv:0710.1451 (2007). https://dx.doi.org/10.48550/arXiv.0710.1451.
5. Bilgici, G., Two generalizations of Lucas sequence, Applied Mathematics and Computation, 245 (2014), 526–538. https://dx.doi.org/10.1016/j.amc.2014.07.111.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献