Affiliation:
1. SOKOTO STATE UNIVERSITY
2. USMANU DANFODIYO UNIVERSITY, SOKOTO
Abstract
This paper presents cryptanalysis attack on RSA variant with modulus $N=p^rq$ for $r\geq 2$ with three public and private exponents $(e_1,d_1),$ $(e_2,d_2),$ $(e_3,d_3)$ sharing the same modulus $N$ where $p$ and $q$ are consider to be primes having the same bit size. Our attack shows that we get the private exponent $\sigma
Publisher
Journal of Mathematical Sciences and Modelling
Subject
Materials Chemistry,Economics and Econometrics,Media Technology,Forestry
Reference15 articles.
1. \bibitem{Rivest} Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. { Communications of the ACM (1978)}{ (21)}, 120--126.
2. \bibitem{Wiener}Wiener M. Cryptanalysis of Short RSA Secret Exponents. {IEEE Transaction Information Theory 1990}; {36(3)}, 553--558.
3. \bibitem{saidu1}Abubakar S I., Ariffin M R K, and Asbullah M A. A New Simultaneous Diophantine Attack Upon RSA moduli $N = pq$, { In Cryptology and Information Security Conference} (2018), 119--131.
4. \bibitem{saidu} Ariffin M K Rezal, Abubakar S I, Yunos F, and Asbullah M A. New Cryptanalytic Attack on RSA Modulus $N= pq$ using Small Prime Difference Method, { Cryptography 2019}, { 3(1):2},doi.org/10.3390;3010002.
5. \bibitem{Takagi}T. Takagi, Fast RSA-type cryptosystem modulo $p^kq$, {\it Advances in Cryptology-CRYPTO 1998}, Springer Berlin Heidelberg, (1998), 318--326.