Publisher
Journal of Mathematical Sciences and Modelling
Reference19 articles.
1. 1. Afrin, N., Feng, Z.C., Zhang, Y., Chen, J.K.: Inverse estimation of front surface temperature of a locally heated plate with temperature-dependent conductivity via Kirchhoff transformation. Int. J. Thermal Sciences. 69, 53-60 (2013).
2. 2. Arpaci, V.S.: Conduction Heat Transfer, Addison-Wesley Publishing Company, Inc., Massachusetts (1966).
3. 3. Berger, M. S.: Nonlinearity & Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis. Academic Press, London (1977).
4. 4. Carslaw, H. S., Jaeger, J. C.: Conduction of Heat in Solids. Oxford, Clarendon (1959).
5. 5. Chantasiriwan, S.: Steady-state determination of temperature-dependent thermal conductivity. Int. Commun. Heat Mass Transfer. 29, 811– 819 (2002).6. Gama, R.M.S.: A new mathematical model for energy transfer problems with radiative boundary conditions. Appl. Math. Modelling, no.2, 14, pp.96-103 (1990).