Affiliation:
1. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ, MATEMATİK VE BİLGİSAYAR BİLİMLERİ BÖLÜMÜ, MATEMATİK VE BİLGİSAYAR BİLİMLERİ PR.
2. BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ
Abstract
In this article, we delve into the realm of higher dimensional Leibniz-Rinehart algebras, exploring the intricate structures of Leibniz algebroids and their applications. By generalizing the concept of Lie algebroids and incorporating a Leibniz rule for the anchor map, the study sheds light on the fundamental principles underlying connections and underscores their significance. Through a comprehensive analysis of Leibniz-Rinehart algebras, this study paves the way for advancements and applications, offering a deeper understanding of the intricate relationship between algebraic and geometric structures.
Publisher
Journal of Mathematical Sciences and Modelling
Reference21 articles.
1. [1] J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, L’Enseignement Mathematique 39 (1993), 269–292.
2. [2] J.-L. Loday, T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993), 139–158.
3. [3] T. Jubin, Benoı, N. Poncin, K. Uchino, Free Courant and derived Leibniz pseudoalgebras, J. Geom. Mech., 8(1) (2016) 71–97.
4. [4] A. Aytekin, Categorical structures of Lie-Rinehart crossed module, Turkish J. Math., 43(1) (2019), 511–522.
5. [5] A. B. Hassine, T. Chtioui, M. Elhamdadi, S. Mabrouk, Extensions and Crossed Modules of n-Lie-Rinehart Algebras, Adv. Appl. Clifford Algebr., 32(3) (2022),31.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Isomorphism Theorems for Crossed Squares of Commutative Algebras;Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2024-08-23