Research of actual information on well casing using machine learning and neural networks

Author:

Shalyapin D. V.1,Bakirov D. L.1,Fattahov M. M.2,Shalyapina A. D.3,Kuznetsov V. G.3

Affiliation:

1. Industrial University of Tyumen; KogalymNIPIneft Branch of LUKOIL-Engineering LLC

2. KogalymNIPIneft Branch of LUKOIL-Engineering LLC

3. Industrial University of Tyumen

Abstract

In domestic and world practice, despite the measures applied and developed to improve the quality of well casing, there is a problem of leaky structures in almost 50 % of completed wells. The study of actual data using classical methods of statistical analysis (regression and variance analyses) doesn't allow us to model the process with sufficient accuracy that requires the development of a new approach to the study of the attachment process. It is proposed to use the methods of machine learning and neural network modeling to identify the most important parameters and their synergistic impact on the target variables that affect the quality of well casing. The formulas necessary for translating the numerical values of the results of acoustic and gamma-gamma cementometry into categorical variables to improve the quality of probabilistic models are determined. A database consisting of 93 parameters for 934 wells of fields located in Western Siberia has been formed. The analysis of fastening of production columns of horizontal wells of four stratigraphic arches is carried out, the most weighty variables and regularities of their influence on target indicators are established. Recommendations are formulated to improve the quality of well casing by correcting the effects of acoustic and gamma-gamma logging on the results.

Publisher

Industrial University of Tyumen

Subject

General Medicine

Reference20 articles.

1. Gorbacheva, O. A. (2012). Razrabotka i vnedrenie metodov kontrolya i issledovaniy skvazhin s mezhkolonnymi davleniyami na Astrakhanskom GKM. Avtoref. diss. ... kand. tekhn. nauk. Ufa, 26 p. (In Russian).

2. Bakirov, D. L., Burdyga, V. A., Fattakhov, M. M., & Gritsay, G. N. (2019). To the problem of the assessment of wells cementing quality. Oilfield Engineering, (9), pp. 10-13. (In Russian). DOI: 10.30713/0207-2351-2019-9(609)-10-13

3. Bakirov, D. L., Fattakhov, M. M., Bondarenko, L. S., Malyutin, D. V., & Bagaev, P. A. (2014). Technology implementation efficiency of construction of multilateral wells with horizontal ending at the fields of "LUKOIL-THE WESTERN SIBERIA, LTD.". Geology, Geophysics and Development of Oil and Gas Fields, (10), pp. 42-45. (In Russian).

4. Malyutin, D. V., Bakirov, D. L., Babushkin, E. V., & Svyatukhov, D. S. (2016). Geomechanical modeling to solve the problem of wells construction in LLC "LUKOIL-WESTERN SIBERIA" (on the example of Vategansky deposit). Geologiya, geofizika i razrabotka neftyanyh i gazovyh mestorozhdeniy, (11), pp. 23-26. (In Russian).

5. Bakirov, D. L., Mazur, G. V., Babushkin, E. V., Bagaev, P. A., & Ovchinnikov, V. P. (2019). Improving technology of horizontal sidetracking in complicated geological-technical conditions. Oil Industry, (8), pp. 40-43. (In Russian). DOI: 10.24887/0028-2448-2019-8-40-43

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3