Enteric α-Defensin Contributes to Recovery of Radiation-Induced Intestinal Injury by Modulating Gut Microbiota and Fecal Metabolites

Author:

Wu Jie12,Ran Xi3,Wang Tao24,Xiong Kun1,Long Shuang24,Hao Yuhui24,Wang Peng5,Wang Aiping14

Affiliation:

1. a Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China

2. b Department of Radiation Medicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China

3. c Department of Clinical Laboratory, the Second Affiliated Hospital of Army Military Medical University, Chongqing 400037, China

4. d State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400038, China

5. e Department of Oncology, Southwest Hospital, Army Medical University

Abstract

The effect of ionizing radiation on the gastrointestinal tract is a common complication of abdominal and pelvic radiotherapy. However, the pathological features of radiation enteropathy and its effective medical intervention regimen is still a global challenge. Here, we explored the role and mechanism of enteric alpha-defensins (EαDs) in protecting against radiation enteropathy. To address this, we utilized EαDs-deficiency mice, in which the matrix metallopeptidase 7 to activate Paneth cell α-defensins was knockout (KO) mice, and the complementary wild-type (WT) control mice for this study. Remarkably, the KO mice were more susceptible to 5.0 Gy total-body irradiation, resulting in worse clinic scores and lower survival rate, compared with the wild-type mice. Histological examination indicated that the KO mice were subjected to slow recovery of intestinal villus and mucosa function, characterized by the reduced expression of TFF3, Glut1 and Muc2. In addition, compared with the wild-type controls, the KO mice experienced serious inflammation response in intestinal tissue, indicated by the remarkably increased expression level of IL-1β, IL-6 and IL-12. Using high-throughput sequencing analysis, we found that the intestinal bacterial community of the KO mice was more prone to dysbiosis than that of the WT mice, with significantly increased abundance of opportunistic pathogenic bacteria, such as Streptococcus sp. and Escherichia-Shigella sp., whereas remarkably decreased probiotics harboring Lactobacillus sp., Desulfovibrio sp. etc. Fecal metabolomics analysis indicated that the relative abundance of 31 metabolites arose significantly different between WT and KO mice on day 10 after radiation exposure. A subset of differential metabolites to regulate host metabolism and immunity, such as acetic acid, acetate, butanoic acid, was negatively correlated with the alteration of gut microbiota in the irradiated KO mice. This study provides new insight into EαDs contribution to the recovery of radiation-induced intestinal damage, and suggests a potential novel target to prevent the adverse effects of radiotherapy.

Publisher

Radiation Research Society

Subject

Radiology, Nuclear Medicine and imaging,Radiation,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3