Proximity Estimation and Quantification of Ionizing Radiation-induced DNA Lesions in Aqueous Media using Fluorescence Spectroscopy

Author:

Akamatsu Ken1,Satoh Katsuya1,Shikazono Naoya1,Saito Takeshi2

Affiliation:

1. a Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan

2. b Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan, Osaka 590-0494, Japan

Abstract

Clustered DNA damage (cluster) or a multiply damaged site, which is a region with two or more lesions within one or two helical turns, has a high mutagenic potential and causes cell death. We quantified fluorophore-labeled lesions and estimated their proximity through fluorescence anisotropy measurements depending on Förster resonance energy transfer (FRET) among the fluorophores close to each other. pUC19 plasmid DNA (2,686 base pairs) dissolved in water or 0.2 M Tris-HCl buffer at a concentration of 10 μg/μL was irradiated by several ionizing radiations with varying linear energy transfers (LET, 0.2–1890 keV/μm). Electrophilic carbonyls (aldehydes and ketones) at abasic sites (APs) produced in DNA were labeled with Alexa Fluor 488 fluorescent dyes with an O-amino functional group. Regardless of the presence or absence of the buffer, AP yields (the number of APs/base pair/Gy) tended to decrease with increasing LET, and the ratio of the AP yield (in 0.2 M Tris-HCl/in water) was less than 0.1 in the LET range of 0.2–200 keV/μm. However, in a higher LET range, the ratios were greater than 0.1. At a low dose, fluorescence anisotropy decreased with increasing LET in 0.2 M Tris-HCl, whereas, in water, this LET dependence was almost insignificant. These findings suggest that 1. the damage distribution on a DNA molecule formed by indirect effects (e.g., by hydroxyl radicals) does not depend on radiation quality and 2. greater LET radiation is more likely to produce a cluster and/or to produce a cluster with shorter distances between lesions by direct effects. This FRET-based proximity estimation of DNA lesions will contribute not only to the identification of clusters and their complexity in a whole genome, but also to the study of their repair mechanism by single-molecular level fluorescence microscopy.

Publisher

Radiation Research Society

Subject

Radiology, Nuclear Medicine and imaging,Radiation,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3