Laboratory evaluation of novel nano composite gel for water shut-off

Author:

Veliyev E. F., ,Aliyev A. A., ,

Abstract

When extracting oil and gas from underground reservoirs, fluids such as water, CO2, polymer solutions, and surfactant solutions are often injected to displace the hydrocarbon resources. However, the presence of high-permeable layers, channels, and fractures in the reservoirs can hinder the efficiency of the displacement processes. The displacing fluids tend to channel through these high-permeability features, leaving behind significant amounts of hydrocarbon in low-permeability zones, which remain unswept. Recent developments in nanocomposite hydrogels, such as PPGs, have shown promising results for water shutoff due to their thermal stability and deformability. In this study, a preformed particle gel with nano additive (NC-PPG) was developed through free radical polymerization of AM, AMPS, and nanoclay. Nanoclay nanoparticles were found to act as physical cross-linkers in the polymer network, leading to smaller pore sizes and slightly enhanced thermal stability. The addition of an appropriate amount of nanoclay nanoparticles significantly improved the swelling rate and mechanical properties of NC-PPG. The presented composition also showed good salt tolerance, as evidenced by its compatibility with highly saline formation water and the plugging rate and RRF of 0.25% NC-PPG solution, which were 94.3% and 17.6, respectively, in the sand-pack flowing experiment. These results suggest that NC-PPG has the potential to effectively plug the high permeability zones in mature reservoirs, making it a suitable candidate for water shutoff treatment and enhanced oil recovery (EOR) strategies. The ability of NC-PPG to improve sweep efficiency and control water flow in reservoirs can contribute to more efficient oil production and reservoir management practices. Keywords: enhanced oil recovery; water shut-off; plugging efficiency; preformed particle gel; nanoclay; sweep efficiency.

Publisher

Oil Gas Scientific Research Project Institute

Subject

Geology,Geophysics,Applied Mathematics,Chemistry (miscellaneous),Geotechnical Engineering and Engineering Geology,Fuel Technology,Chemical Engineering (miscellaneous),Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3