Technologies assuring the service properties of friction pairs with cellular microrelief surfaces

Author:

Bashmur K. A., ,Tynchenko V. S.,Sergienko R. B.,Kukartsev V. V.,Kurashkin S. O.,Tynchenko V. V., , , , , , , , , , ,

Abstract

Article focuses on the improvement of the technologies used to improve the durability of friction pair components. The authors use the piston compressor to study cellular microrelief surfaces of cylindrical components. The cells are shaped as elliptic paraboloid with uneven positive parameters. The use of cellular microrelief surfaces is highly preferred as they reduce the attrition wear of the friction pairs through assuring the hydrodynamic load capacity of the lubrication layer with the shape of the microrelief. The research goals included the parametric analysis of the lubrication layer behavior in the gap between the microrelief cells. To do this, the authors developed an analytical model based on the theory of hydrodynamic lubrication and constructed a CFD model using the ANSYS Fluent software. To contain the transfer equations, the authors used the turbulence model SST k–ω. Both models showed that the maximum hydrodynamic load capacity coincided with the 75%-length of the major axis of the elliptic cell, which also corresponds to 0.128 mm in cell depth. The maximum lifting hydrodynamic pressure on one microrelief cell amounted to 3 kPa. Based on the results of the parametric analysis, the authors claim that the cellular microrelief can be efficiently used to assure the service properties of friction pairs in process units. Keywords: friction pair; cylinder sleeve; piston ring; cellular microrelief; hydrodynamic model; mathematical model; ANSYS Fluent; two-dimensional parametric analysis.

Publisher

Oil Gas Scientific Research Project Institute

Subject

Geology,Geophysics,Applied Mathematics,Chemistry (miscellaneous),Geotechnical Engineering and Engineering Geology,Fuel Technology,Chemical Engineering (miscellaneous),Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3