Analysis of various approaches to accurately prediction of phase equilibrium of binary helium systems based on the Peng-Robinson equation of state
-
Published:2020-12-31
Issue:4
Volume:
Page:117-126
-
ISSN:2218-6867
-
Container-title:SOCAR Proceedings
-
language:
-
Short-container-title:SOCAR Proceedings
Author:
Malyshev V.L., ,Moiseeva E.F.,
Abstract
The paper presents a detailed algorithm for calculating the vapor-liquid phase equilibrium for multicomponent systems based on the Peng-Robinson equation of state. Various approaches are considered that make it possible to improve the quality of predicting phase equilibrium by the example of eight binary helium systems containing nitrogen, argon, carbon dioxide, methane, ethane, propane, isobutane, and n-butane. The influence of the acentric factor and the binary interaction parameter on the accuracy of the helium systems phase behavior predicting is analyzed. The optimal interaction coefficients for the presented systems are found under the assumption that this parameter does not depend on temperature. The temperature range of applicability of various approaches is determined, which makes it possible to maximize the description of the phase behavior of helium systems.
Publisher
Oil Gas Scientific Research Project Institute
Subject
Geology,Geophysics,Applied Mathematics,Chemistry (miscellaneous),Geotechnical Engineering and Engineering Geology,Fuel Technology,Chemical Engineering (miscellaneous),Energy Engineering and Power Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献