Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Survey

Author:

Rony Jérôme1ORCID,Belharbi Soufiane1ORCID,Dolz Jose2ORCID,Ben Ayed Ismail1,McCaffrey Luke3,Granger Eric1ORCID

Affiliation:

1. LIVIA, Dept. of Systems Engineering, École de technologie supérieure, Montreal, Canada

2. LIVIA, Dept. of Software and IT Engineering, École de technologie supérieure, Montreal, Canada

3. Goodman Cancer Research Centre, Dept. of Oncology, McGill University, Montreal, Canada

Abstract

Using state-of-the-art deep learning (DL) models to diagnose cancer from histology data presents several challenges related to the nature and availability of labeled histology images, including image size, stain variations, and label ambiguity. In addition, cancer grading and the localization of regions of interest (ROIs) in such images normally rely on both image- and pixel-level labels, with the latter requiring a costly annotation process. Deep weakly-supervised object localization (WSOL) methods provide different strategies for low-cost training of DL models. Given only image-class annotations, these methods can be trained to simultaneously classify an image, and yield class activation maps (CAMs) for ROI localization. This paper provides a review of deep WSOL methods to identify and locate diseases in histology images, without the need for pixel-level annotations. We propose a taxonomy in which these methods are divided into bottom-up and top-down methods according to the information flow in models. Although the latter have seen only limited progress, recent bottom-up methods are currently driving a lot of progress with the use of deep WSOL methods. Early works focused on designing different spatial pooling functions. However, those methods quickly peaked in term of localization accuracy and revealed a major limitation, namely, – the under-activation of CAMs, which leads to high false negative localization. Subsequent works aimed to alleviate this shortcoming and recover the complete object from the background, using different techniques such as perturbation, self-attention, shallow features, pseudo-annotation, and task decoupling.<br>In the present paper, representative deep WSOL methods from our taxonomy are also evaluated and compared in terms of classification and localization accuracy using two challenging public histology datasets – one for colon cancer (GlaS), and a second, for breast cancer (CAMELYON16). Overall, the results indicate poor localization performance, particularly for generic methods that were initially designed to process natural images. Methods designed to address the challenges posed by histology data often use priors such as ROI size, or additional pixel-wise supervision estimated from a pre-trained classifier, allowing them to achieve better results. However, all the methods suffer from high false positive/negative localization. Classification performance is mainly affected by the model selection process, which uses either the classification or the localization metric. Finally, four key challenges are identified in the application of deep WSOL methods in histology, namely, – under-/over-activation of CAMs, sensitivity to thresholding, and model selection – and research avenues are provided to mitigate them. Our code is publicly available at <a href='https://github.com/jeromerony/survey_wsl_histology'>https://github.com/jeromerony/survey_wsl_histology</a>

Publisher

Machine Learning for Biomedical Imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3