Image quality assessment by overlapping task-specific and task-agnostic measures: application to prostate multiparametric MR images for cancer segmentation

Author:

Saeed Shaheer U.1,Yan Wen1,Fu Yunguan12,Giganti Francesco1,Yang Qianye1,Baum Zachary M. C.1,Rusu Mirabela3,Fan Richard E.3,Sonn Geoffrey A.3,Emberton Mark1,Barratt Dean C.1,Hu Yipeng1

Affiliation:

1. University College London

2. InstaDeep

3. Stanford University

Abstract

Image quality assessment (IQA) in medical imaging can be used to ensure that downstream clinical tasks can be reliably performed. Quantifying the impact of an image on the specific target tasks, also named as task amenability, is needed. A <em>task-specific</em> IQA has recently been proposed to learn an image-amenability-predicting controller simultaneously with a target task predictor. This allows for the trained IQA controller to measure the impact an image has on the target task performance, when this task is performed using the predictor, e.g. segmentation and classification neural networks in modern clinical applications. In this work, we propose an extension to this task-specific IQA approach, by adding a <em>task-agnostic</em> IQA based on auto-encoding as the target task. Analysing the intersection between low-quality images, deemed by both the task-specific and task-agnostic IQA, may help to differentiate the underpinning factors that caused the poor target task performance. For example, common imaging artefacts may not adversely affect the target task, which would lead to a low task-agnostic quality and a high task-specific quality, whilst individual cases considered clinically challenging, which can not be improved by better imaging equipment or protocols, is likely to result in a high task-agnostic quality but a low task-specific quality. We first describe a flexible reward shaping strategy which allows for the adjustment of weighting between task-agnostic and task-specific quality scoring. Furthermore, we evaluate the proposed reinforcement learning algorithm, using a clinically challenging target task of prostate tumour segmentation on multiparametric magnetic resonance (mpMR) images. Based on experimental results using mpMR images from 850 patients, it was found that <em>a</em>) The task-agnostic IQA may identify artefacts, but with limited impact on the accuracy of cancer segmentation networks. A Dice score of 0.367±0.017 was obtained after rejecting 10% of low quality images, compared to 0.354±0.016 from a non-selective baseline; <em>b</em>} The task-specific IQA alone improved the performance to 0.415±0.020, at the same rejection ratio. However, this system indeed rejected both images that impact task performance due to imaging defects and due to being clinically challenging; and <em>c</em>) The proposed reward shaping strategy, when the task-agnostic and task-specific IQA are weighted appropriately, successfully identified samples that need re-acquisition due to defected imaging process, as opposed to clinically challenging cases due to low contrast in pathological tissues or other equivocacy in radiological presentation.<br>Our code is available at https://github.com/s-sd/task-amenability/tree/v1

Publisher

Machine Learning for Biomedical Imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3