A Mechanism of Vasodilatory Action of Polyamines and Acetylpolyamines: Possible Involvement of their Ca2+ Antagonistic Properties

Author:

Myung Chang-Seon1,Blankenship James W2,Meerdink Denis J2

Affiliation:

1. Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA

2. Department of Physiology and Pharmacology, University of the Pacific, School of Pharmacy and Health Sciences, Stockton, CA 95211, USA

Abstract

Abstract Polyamines, a class of low-molecular weight organic polycations, have been shown to produce relaxing effects in vascular smooth muscles, although the mechanism has not been carefully examined. In this study, the mechanism of vascular action of polyamines and their metabolites, acetylpolyamines, was pharmacologically examined in the rabbit isolated thoracic aorta focusing on an endothelium-dependent component of vasodilatation and Ca2+ influx through plasma membrane channels. Both polyamines and acetylpolyamines (except N1-acetylputrescine, which produced no response or very slight contraction) caused concentration-dependent relaxation in pre-constricted aortic rings containing an intact endothelium. Aortic rings denuded of endothelium were also responsive to both polyamines and acetylpolyamines. Inhibitors of nitric oxide (reduced haemoglobin and Nω-nitro-l-arginine methyl ester), vasodilator prostaglandins (indomethacin) and guanylyl cyclase (methylene blue) did not affect the relaxation induced by both polyamines and acetylpolyamines in either endothelium-intact or -denuded aortic rings. Both polyamines and acetylpolyamines inhibited the concentration-dependent contraction for phenylephrine and K+. The Ca2+ agonist Bay K 8644 induced concentration-dependent contraction in segments of rabbit aorta partially depolarized with 15 mm KCl, and both polyamines and acetylpolyamines relaxed the Bay K 8644-induced contraction in a concentration-dependent manner. Interestingly, both polyamines and acetylpolyamines also decreased contractions evoked by the Ca2+ ionophore A23187. The concentration-response curve to exogenous Ca2+ in K+-depolarization medium (K+ = 120 mm) was shifted to the right by both polyamines and acetylpolyamines. The response elicited by Ca2+ was increased by Bay K 8644 (10−6  m), and this potentiation was also inhibited by both polyamines and acetylpolyamines. The results indicate that both polyamines and acetylpolyamines can induce vasorelaxation of rabbit thoracic aorta by an endothelium-independent mechanism in-vitro and relax vascular smooth muscle by acting at the plasma membrane level, decreasing the influx of Ca2+. Therefore, polyamines and acetylpolyamines may have Ca2+ antagonistic properties which may, in part, be involved in the mechanism of rabbit aortic vascular smooth muscle relaxation.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference40 articles.

1. Effect of Ca2+ agonist Bay K 8644 in human placental arteries;Barrus;Gen. Pharmacol.,1995

2. Mechanisms of action of transmitters and other substances on smooth muscle;Bolton;Physiol. Rev.,1979

3. Natural polyamines stimulate G-proteins;Bueb;Biochem. J.,1992

4. Mechanisms of calcium antagonist-induced vasodilation;Cauvin;Annu. Rev. Pharmacol. Toxicol.,1983

5. Polyamines relax vascular and respiratory tract smooth muscle;Chideckel;Clin. Res.,1985

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3