Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine

Author:

Kostewicz Edmund S1,Wunderlich Martin1,Brauns Ulrich2,Becker Robert2,Bock Thomas2,Dressman Jennifer B1

Affiliation:

1. Department of Pharmaceutical Technology, J. W. Goethe University, Marie-Curie Str. 9, D-60439 Frankfurt am Main, Germany

2. Boehringer Ingelheim Pharma KG, Birkendorfer Str. 65, D-88397 Biberach an der Riss, Germany

Abstract

Abstract Solubility and dissolution relationships in the gastrointestinal tract can be critical for the oral bioavailability of poorly soluble drugs. In the case of poorly soluble weak bases, the possibility of drug precipitation upon entry into the small intestine may also affect the amount of drug available for uptake through the intestinal mucosa. To simulate the transfer out of the stomach into the intestine, a transfer model was devised, in which a solution of the drug in simulated gastric fluid is continuously pumped into a simulated intestinal fluid, and drug precipitation in the acceptor medium is examined via concentration–time measurements. The in-vitro precipitation of three poorly soluble weakly basic drugs, dipyridamole, BIBU 104 XX and BIMT 17 BS, was investigated. For all three, extensive supersaturation was achieved in the acceptor medium. Under simulated fasted-state conditions, precipitation occurred for all three compounds whereas under simulated fed-state conditions, the higher concentrations of bile components and the lower pH value in the acceptor medium inhibited precipitation at concentrations corresponding to usual doses in all cases. Comparison with pharmacokinetic data indicated that a combination of transfer model data with solubility and dissolution profiles should lead to better predictions of in-vivo behaviour of poorly soluble weak bases.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3