Transbilayer transport of a propyltrimethylammonium derivative of diphenylhexatriene (TMAP-DPH) in bovine blood platelets and adrenal chromaffin cells

Author:

Kitagawa Shuji1,Tachikawa Eiichi2,Kashimoto Takashi2

Affiliation:

1. Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Kamishin'ei-cho 5–13–2, Niigata 950–2081, Japan

2. Department of Pharmacology, School of Medicine, Iwate Medical University, Uchimaru 19–1, Morioka 020–8505, Japan

Abstract

Abstract The membrane fluorescent probe N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethyl-ammonium (TMAP-DPH) has an additional three-carbon spacer between the fluorophore and the trimethylammonium substituent of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH). As a basic study to clarify the transport mechanism of amphiphilic quaternary ammoniums, we observed the characteristics of the transbilayer transport of TMAP-DPH in bovine blood platelets and bovine adrenal chromaffin cells using the albumin extraction method. We compared these inward transport rates with those of TMA-DPH. TMAP-DPH crossed into the cytoplasmic layers of the membranes more slowly than TMA-DPH after rapid binding to the outer halves of the plasma membranes. The transport rate markedly depended on temperature. Time to reach the half-maximal incorporated amount of TMAP-DPH increased threefold accompanied by an increase in the concentration from 0.2 to 1.5 μm. The transport was stimulated significantly by various types of membrane perturbations such as modification of sulfhydryl-groups by N-ethylmaleimide and benzyl alcohol-induced increase in the fluidity of the lipid bilayer. The saturation phenomenon suggested the presence of the regulatory process in the transbilayer transport of TMAP-DPH.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3