Solvent change co-precipitation with hydroxypropyl methylcellulose phthalate to improve dissolution characteristics of a poorly water-soluble drug

Author:

Sertsou Gabriel1,Butler James2,Hempenstall John2,Rades Thomas1

Affiliation:

1. School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand

2. Pharmaceutical Development Department, GlaxoSmithKline, Park Road, Ware, Herts, UK

Abstract

Abstract Research compound GWX belongs to biopharmaceutical classification system type II, and hence shows dissolution-rate-limited absorption. To improve its dissolution performance, GWX was formulated as a co-precipitate with hydroxypropyl methylcellulose phthalate (HPMCP). Co-precipitates with various drug-HPMCP ratios were prepared and characterised using modulated differential scanning calorimetry (MDSC), X-ray powder diffraction, HPLC and dissolution testing. Co-precipitates with 1: 9 and2: 8 drug-HPMCP ratios showed the highest extent of dissolution after both 5 and 90 min, followed by 3: 7, 4: 6, and 5: 5 drug-HPMCP co-precipitates, in respective order. Co-precipitates with drug-HPMCP ratios of 6: 4 and greater showed no significant improvement in dissolution over crystalline drug alone. The amounts of crystalline and amorphous drug in co-precipitates, as determined by MDSC, and HPLC quantification of the total amount of drug in co-precipitates were used to determine the amount of drug incorporated into solid solution. It was found that dissolution rate and extent was correlated to the amount of drug incorporated into amorphous solid solution for the 1:9 to 5: 5 drug-HPMCP ratio co-precipitates. Amorphous drug alone and physical mixtures of drug and HPMCP showed very little and no significant improvement in dissolution rate or extent, respectively, above crystalline drug alone. Amorphous drug alone re-crystallized to a large extent within 1 min of contact with the dissolution medium, whereas 4: 6 drug-HPMCP co-precipitate showed a lower degree of re-crystallization and 2: 8 drug-HPMCP co-precipitate showed very little re-crystallization. It was concluded that the likely mechanisms of improved dissolution of low drug-HPMCP ratio co-precipitates were improved wetting or increased surface area for mass transfer, thermodynamically enhanced dissolution of a higher energy amorphous form and inhibition of re-crystallization, when drug was incorporated into solid solution.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3