Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo

Author:

Liu Xing12,Chen Dawei2,Xie Liping1,Zhang Rongqing1

Affiliation:

1. Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, P.R. China

2. Department of Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110015, P.R. China

Abstract

Abstract Bee venom has been reported to exhibit antitumour activity in-vitro and in-vivo. Apoptosis, necrosis and lysis of tumour cells were suggested as possible mechanisms by which bee venom inhibited tumour growth. The aim of this study was to investigate potential mechanisms by which bee venom inhibits K1735M2 mouse melanoma cells in-vitro and B16 melanoma, a transplantable solid melanoma in C57BL/6 mice, in-vivo. The proliferation of K1735M2 cells in-vitro was inhibited by bee venom in a concentration- and time-dependent manner. The inhibition was indicated by the arrest of the cell cycle at the G1 stage, as detected by flow cytometric measurements. The bee venom induced apoptosis-like cell death as identified by histological observations and by DNA fragmentation. In the in-vivo experiments, the bee venom (1.0, 3.0, 9.0 mg kg−1 of body weight, on days 1–12) was injected intraperitoneally into mice 24 h after the mice were inoculated with B16 cells. Inhibition of the solid tumour was observed. Apoptosis of the K1735M2 cells was suggested as the possible mechanism by which bee venom inhibited cell proliferation and induced K1735M2 cell differentiation in-vitro. The in-vivo experiment indicated that bee venom could be used as a chemotherapeutic agent against malignant tumours.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3