Prediction of human pharmacokinetics—evaluation of methods for prediction of hepatic metabolic clearance

Author:

Fagerholm Urban1

Affiliation:

1. Clinical Pharmacology, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden

Abstract

Abstract Methods for prediction of hepatic clearance (CLH) in man have been evaluated. A physiologically-based in-vitro to in-vivo (PB-IVIV) method with human unbound fraction in blood (fu,bl) and hepatocyte intrinsic clearance (CLint)-data has a good rationale and appears to give the best predictions (maximum ∼2-fold errors; < 25% errors for half of CL-predictions; appropriate ranking). Inclusion of an empirical scaling factor is, however, needed, and reasons include the use of cryopreserved hepatocytes with low activity, and inappropriate CLint- and fu,bl-estimation methods. Thus, an improvement of this methodology is possible and required. Neglect of fu,bl or incorporation of incubation binding does not seem appropriate. When microsome CLint-data are used with this approach, the CLH is underpredicted by 5- to 9-fold on average, and a 106-fold underprediction (attrition potential) has been observed. The poor performance could probably be related to permeation, binding and low metabolic activity. Inclusion of scaling factors and neglect of fu,bl for basic and neutral compounds improve microsome predictions. The performance is, however, still not satisfactory. Allometry incorrectly assumes that the determinants for CLH relate to body weight and overpredicts human liver blood flow rate. Consequently, allometric methods have poor predictability. Simple allometry has an average overprediction potential, > 2-fold errors for ∼1/3 of predictions, and 140-fold underprediction to 5800-fold overprediction (potential safety risk) range. In-silico methodologies are available, but these need further development. Acceptable prediction errors for compounds with low and high CLH should be ∼50 and ∼10%, respectively. In conclusion, it is recommended that PB-IVIV with human hepatocyte CLint and fu,bl is applied and improved, limits for acceptable errors are decreased, and that animal CLH-studies and allometry are avoided.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference316 articles.

1. Quantitative relations in the physiological contributions of mammals;Adolph;Science,1949

2. Models of hepatic drug clearance: discrimination between the ‘well-stirred’ and ‘parallel-tube’ models;Ahmad;J. Pharm. Pharmacol.,1983

3. An assessment of human liver-derived in vitro systems to predict the in vivo metabolism and clearance of almokalant;Andersson;Drug Metab. Dispos.,2001

4. An evaluation of the in vitro metabolism data for predicting the clearance and drug-drug interaction potential of CYP2C9 substrates;Andersson;Drug Metab. Dispos.,2004

5. A compartmental model of hepatic disposition kinetics: 1. Model development and application to linear kinetics;Anissimov;J. Pharmacokinet. Pharmacodyn.,2002

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3