Affiliation:
1. Department of Early Childhood Care and Education, Meiho Institute of Technology, Pingtung, Taiwan
2. Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
3. Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
4. Department and Graduate Institute of Pharmacology, Kaohsiung Medical University, Kaohsiung, Taiwan
Abstract
Abstract
In this study, we investigate the protective effects of eugenosedin-A on p38 mitogen-activated protein kinase (MAPK), inflammatory nitric oxide (NO) and cyclooxygenase-2 (COX-2) pathways in a rat model of endotoxin shock. Rats were pretreated with eugenosedin-A, trazodone, yohimbine (1 mg kg−1, i.v.), aminoguanidine or ascorbic acid (15 mg kg−1, i.v.) 30 min before endotoxin challenge. Endotoxaemia was induced by a single i.v. injection of lipopolysaccharide (LPS, 10 mg kg−1). In rats not treated with eugenosedin-A, LPS increased plasma concentrations of NO and prostaglandin E2 (PGE2), and levels of p38 MAPK, inducible NO synthase (iNOS) and COX-2 proteins in the liver, lung, aorta and lymphocytes. In the pre-treated rats, eugenosedin-A not only inhibited the LPS-induced NO and PGE2 levels but also attenuated the LPS-induced increase in p38 MAPK and iNOS levels in the liver, aorta and lymphocytes. Eugenosedin-A also reduced LPS-induced COX-2 proteins in the aorta and lymphocytes. Likewise, aminoguanidine, ascorbic acid, yohimbine and trazodone were also found to decrease NO and PGE2 concentrations after endotoxin challenge. While aminoguanidine and ascorbic acid also attenuated the LPS-induced increase in p38 MAPK, iNOS and COX-2 proteins in the aorta and lymphocytes, trazodone and yohimbine inhibited only the increase in p38 MAPK, iNOS and COX-2 proteins in lymphocytes. Finally, eugenosedin-A (10−10-10−8 M) significantly inhibited the biphasic response induced by hydrogen peroxide (10−6-3 × 10−5 M) in rat denudated aorta. Taken together, the results of this study indicate that eugenosedin-A, as well as ascorbic acid, can attenuate free-radical-mediated aortic contraction and relaxation. It may therefore be able to reduce the damage caused by septic shock by inhibiting formation of p38 MAPK, iNOS, COX-2 and free radicals.
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献