Site-specific accumulation of the cancer preventive dietary polyphenol ellagic acid in epithelial cells of the aerodigestive tract

Author:

Whitley Alexander C1,Sweet Douglas H2,Walle Thomas1

Affiliation:

1. Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, PO Box 250505, Charleston, SC 29425, USA

2. Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, Charleston, SC 29425, USA

Abstract

Abstract Ellagic acid (EA), a polyphenol present in berries, has been demonstrated to prevent oesophageal and colon cancer in animals. To better understand the site-specificity of these effects, we studied the accumulation and transport of [14C]EA in rat aerodigestive epithelial cells in-vivo and in cultured human cells. When [14C]EA was administered to rats by gavage, a high content of EA was found in the oesophagus and small intestine at 0.5h after oral administration and in the colon at 12h, with very low amounts in plasma and peripheral tissues. Studies in human intestinal Caco-2 and human oesophageal HET-1A cells found very limited transcellular transport (Caco-2) of EA but high accumulation (Caco-2 and HET-1A) in the cells. In more detailed studies in the Caco-2 cells, accumulation of EA displayed ATP- and Na+-dependency. Multiple interventions permitted the exclusion of a number of transporters as mediators of this uptake. A dramatically reduced transport of EA at low pH (5.5) compared with high pH (7.4) suggested an important role for the negative charge of EA. This was supported by the organic anion transport inhibitors 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid and bromosulfophthalein. The latter produced as much as 78% inhibition at the 100 μm concentration. Finally, Caco-2 cells were shown to express organic anion transporter 4 (OAT4) mRNA, as was the human large intestine. EA appears to be accumulated along the aerodigestive tract using OATlike transporters, one of which might be OAT4.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3