Pharmacological profile of essential oils derived from Lavandula angustifolia and Melissa officinalis with anti-agitation properties: focus on ligand-gated channels

Author:

Huang Liping1,Abuhamdah Sawsan23,Howes Melanie-Jayne R4,Dixon Christine L3,Elliot Mark S J5,Ballard Clive5,Holmes Clive6,Burns Alistair7,Perry Elaine K8,Francis Paul T5,Lees George1,Chazot Paul L2

Affiliation:

1. Department of Pharmacology & Toxicology, University of Otago, PO Box 913, Dunedin, New Zealand

2. Centre for Integrative Neuroscience (CINS), School of Biological and Biomedical Sciences, Science Park, South Road, Durham University, Durham, UK

3. Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Jordan

4. Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK

5. Centre for Ageing Related Diseases (CARD), King's College, London

6. Clive Holmes: Clinical Neurosciences Research Division, University of Southampton, UK

7. Division of Psychiatry, University of Manchester, UK

8. Institute of Ageing and Health, University of Newcastle, UK

Abstract

Abstract Both Melissa officinalis (Mo) and Lavandula angustifolia (La) essential oils have putative anti-agitation properties in humans, indicating common components with a depressant action in the central nervous system. A dual radioligand binding and electrophysiological study, focusing on a range of ligand-gated ion channels, was performed with a chemically validated essential oil derived from La, which has shown clinical benefit in treating agitation. La inhibited [35S] TBPS binding to the rat forebrain gamma aminobutyric acid (GABA)A receptor channel (apparent IC50 = 0.040 ± 0.001 mg mL−1), but had no effect on N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or nicotinic acetylcholine receptors. A 50:50 mixture of Mo and La essential oils inhibited [3H] flunitrazepam binding, whereas the individual oils had no significant effect. Electrophysiological analyses with rat cortical primary cultures demonstrated that La reversibly inhibited GABA-induced currents in a concentration-dependent manner (0.01–1 mg mL−1), whereas no inhibition of NMDA- or AMPA-induced currents was noted. La elicited a significant dose-dependent reduction in both inhibitory and excitatory transmission, with a net depressant effect on neurotransmission (in contrast to the classic GABAA antagonist picrotoxin which evoked profound epileptiform burst firing in these cells). These properties are similar to those recently reported for Mo. The anti-agitation effects in patients and the depressant effects of La we report in neural membranes in-vitro are unlikely to reflect a sedative interaction with any of the ionotropic receptors examined here. These data suggest that components common to the two oils are worthy of focus to identify the actives underlying the neuronal depressant and anti-agitation activities reported.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3