Regional variations of vasomotion to G-protein coupled receptor agonists following heat stress in rats

Author:

Li Jie12,Cao Yong-Xiao1,Chen Kun-Lun1,Cao Lei1,Ma Zhao1,Xu Cang-Bao13

Affiliation:

1. Department of Pharmacology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P. R. China

2. Department of Pharmacology, Xiang-nan University, Chenzhou, Hu'nan, P. R. China

3. Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Sweden

Abstract

Abstract Objectives This study was designed to compare vascular contractile and relaxing responses to G-protein coupled receptor agonists among the different regions of arteries following heat stress in rats. Methods Heat exposure was performed by increasing the internal temperature of the rats to 42°C for 15 min. After heat stress for 48 h, a myograph system was used to monitor the contractile responses in rat renal, femoral and mesenteric arteries to agonists of endothelin type B (ETB) receptor, endothelin type A (ETA) receptor, serotonin receptor and α-adrenoceptor, respectively. In addition, calcitonin gene-related peptide (CGRP)-induced vasodilation was studied. Key findings The results showed that heat stress induced decreased contractions mediated by α-adrenoceptors and serotonin receptors (at lower concentration), while it increased contraction mediated by endothelin ETB receptors and enhanced relaxation mediated by CGRP receptors in the renal artery. Heat stress increased contractions mediated by endothelin ETB receptors, endothelin ETA receptors and α-adrenoceptors in the femoral artery. In the mesenteric artery, heat stress increased contractions mediated by endothelin ETB and serotonin receptors and relaxation mediated by CGRP receptors. Conclusions The vasomotor responses to the G-protein coupled receptor agonists with altered vascular contractions and relaxations were different in rat renal, femoral and mesenteric arteries after heat stress. This might have contributed to the redistribution of blood flow and aids understanding of the preconditioning phenomenon.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3