Active absorption of ginsenoside Rg1 in vitro and in vivo: the role of sodium-dependent glucose co-transporter 1

Author:

Xiong Jing1,Sun Minjie1,Guo Jianxin2,Huang Luosheng3,Wang Shujing1,Meng Boyu1,Ping Qineng1

Affiliation:

1. Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China

2. Technology Department, Talecris Biotherapeutics, Clayton, North Corolina, USA

3. Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, P.R. China

Abstract

Abstract Objectives Our previous study suggested that adrenaline (epinephrine) could be an effective absorption enhancer for ginsenoside Rg1 (Rg1). This study focused on the transport mechanism of Rg1 and the role of sodium-dependent glucose co-transporter 1 in the regulation of Rg1 uptake after exposure to adrenaline. Methods Caco-2 cells were used as an in-vitro model to assess the absorption mechanism of Rg1. Also the effect of D-glucose on adrenaline-induced absorption of Rg1 was investigated in vivo in rats. Key findings Results showed that the uptake of Rg1 was temperature-dependent. The transport from the basolateral side to the apical side was significantly lower compared with that from the apical to the basolateral side (P < 0.01). The transport of Rg1 was concentration dependent (Km was 41.60 mM, Vmax was 353.75 mol/cm2/min). Cells incubated with D-glucose-free medium exhibited significantly greater Rg1 uptake (+ 62.6%) compared with cells in D-glucose-containing medium. The data indicated that sodium-dependent glucose co-transporter 1 was involved in the transport of Rg1. Adrenaline-induced uptake of Rg1 was significantly inhibited in the presence of phlorizin and the absence of Na+. In the in-vivo study in rats, it was found that after co-administration with D-glucose, the adrenaline-induced absorption of Rg1 was inhibited. The area under the concentration-time curve (AUC0→∞) value was significantly decreased from 64.57 ± 27.08 to 1.37 ± 0.42 μg/ml h (P < 0.001). Conclusions The data suggested that adrenaline enhanced the absorption of Rg1 by regulating sodium-dependent glucose co-transporter 1.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3