Affiliation:
1. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
2. College of Chemistry and Bioengineering, Yichun University, Yichun, China
Abstract
Abstract
Objectives
Polymeric nanoparticles have been extensively studied as drug carriers. Chitosan and its derivatives have attracted significant attention in this regard but have limited application because of insolubility in biological solution. In this work, we attempted to utilize cholesterol-modified glycol chitosan (CHGC) self-aggregated nanoparticles to increase aqueous solubility, and to reduce side effects and enhance the antitumour efficacy of the anticancer drug doxorubicin.
Methods
CHGC nanoparticles were loaded with doxorubicin by a dialysis method, and their characteristics were determined by transmission electron microscopy examination, light-scattering study, in-vitro drug-release study, pharmacokinetic study in rats and in-vivo antitumour activity in mice.
Key findings
The resulting doxorubicin-loaded CHGC nanoparticles (DCNs) formed self-assembled aggregates in aqueous medium. From the observation by transmission electron microscopy, DCNs were almost spherical in shape. The mean diameters of these nanoparticles determined by dynamic light scattering were in the range of 237–336 nm as the doxorubicin-loading content increased from 1.73% to 9.36%. In-vitro data indicated that doxorubicin release from DCNs was much faster in phosphate-buffered saline at pH 5.5 than at pH 6.5 and 7.4, and the release rate was dependent on the loading content of doxorubicin in these nanoparticles. It was observed that DCN-16 (drug loaded content: 9.36%) exhibited prolonged circulation time in rat plasma and showed higher antitumour efficacy against S180-bearing mice than free doxorubicin.
Conclusions
These results indicated that CHGC nanoparticles had potential as a carrier for insoluble anticancer drugs in cancer therapy.
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献