Skin Delivery of Oestradiol from Deformable and Traditiona Liposomes: Mechanistic Studies

Author:

El Maghraby Gamal M M1,Williams Adrian C1,Barry Brian W1

Affiliation:

1. Drug Delivery Group, Postgraduate Studies in Pharmaceutical Technology, The School of Pharmacy, University of Bradford, Bradford, BD7 1DP, UK

Abstract

Abstract Deformable vesicles and traditional liposomes were compared as delivery systems for oestradiol to elucidate possible mechanisms of drug delivery through human skin. Accordingly, epidermal permeation of oestradiol from optimized deformable vesicles and traditional liposome formulations was studied under low dose non-occluded conditions. Five mechanisms were investigated. A free drug mechanism compared low-dose permeation through skin with drug release determined after separation of the free drug. Penetration enhancement was researched by studying skin pretreatment with empty vesicles. Improved drug uptake by skin was monitored by dipping stratum corneum into different formulations for 10 min and determining drug uptake. The possibility that intact vesicles permeate through the epidermis was tested by comparing permeation from 136-nm vesicles with that from > 500-nm vesicles, assuming that penetration depends on vesicle size. The possibility that different entrapment efficiencies in alternative formulations could be responsible for the difference in delivery was also evaluated. Lipid vesicles improved the skin delivery of oestradiol compared with delivery from an aqueous control. Maximum flux (Jmax) was increased 14- to 17-fold by use of deformable vesicles and 8.2- to 9.8-fold by use of traditional liposomes. Deformable vesicles were thus superior to traditional liposomes. Drug release was negligible over the period during which skin flux was maximum. Pretreatment with empty vesicles resulted in an enhancement ratio of 4.3 for pure phosphatidylcholine (PC) vesicles but the enhancement ratio ranged from only 0.8 to 2.4 for other formulations. Vesicles increased drug uptake into the stratum corneum 23- to 29-fold. Relative flux values obtained from small and large vesicles were similar. No correlation was found between entrapment efficiency and skin delivery. The results showed no evidence of a free drug mechanism, but revealed a possible penetration-enhancing effect for pure PC vesicles, although this was not the only mechanism operating. The positive uptake suggested that lipid vesicles increased drug partitioning into the skin. The data provided no evidence for in-vitro liposome penetration through skin as distinct from vesicle penetration into the stratum corneum.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference30 articles.

1. An automated diffusion apparatus for studying skin penetration;Akhter;Int. J. Pharm.,1984

2. Liposomes from soya phospholipids as percutaneous drug carriers: Qualitative in vivo investigations with antibody-loaded liposomes;Artman;Arzneim. Forsch.,1990

3. Liposomes from soya phospholipids as percutaneous drug carriers: Quantitative in vivo investigations with radioactivity;Artman;Arzneim. Forsch.,1990

4. Mode of action of penetration enhancers in human skin;Barry;J. Contr. Rel.,1987

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3