Clinical Consequences of the Biphasic Elimination Kinetics for the Diuretic Effect of Furosemide and its Acyl Glucuronide in Humans

Author:

Vree Tom B1,Van Der Ven André J A M2

Affiliation:

1. Institute of Anaesthesiology, Academic Hospital Nijmegen Sint Radboud, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands

2. Department of Medical Microbiology, Academic Hospital Maastricht, P.O. Box 5800, 6202AZ Maastricht, Netherlands

Abstract

Abstract This review discusses the possibility of whether furosemide acyl glucuronide, a metabolite of furosemide, contributes to the clinical effect of diuresis. First an analytical method (e.g. HPLC) must be available to measure both parent drug and furosemide acyl glucuronide. Then, with correctly treated plasma and urine samples (light protected, pH 5) from volunteers and furosemide-treated patients, the kinetic curves of both furosemide as well as its acyl glucuronide can be measured. The acyl glucuronide is formed in part by the kidney tubules and it is possible that the compound is pharmacologically active through inhibition of the Na+/2Cl-/K+ co-transport system; up to now the mechanism of action has been solely attributed to furosemide. The total body clearance of furosemide occurs by hepatic and renal glucuronidation (50%) and by renal excretion (50%). Enterohepatic cycling of furosemide acyl glucuronide, followed by hydrolysis, results in a second and slow elimination phase with a half-life of 20-30h. This slow elimination phase coincides with a pharmacodynamic rebound phase of urine retention. After each dosage of furosemide, there is first a short stimulation of urine flow (4h), which is followed by a 3-day recovery period of the body. The following clinical implications arise from study of the elimination kinetics of furosemide. Repetitive dosing must result in accumulation of the recovery period. Accumulation of furosemide and its acyl glucuronide in patients with end-stage renal failure results from infinite hepatic cycling. Impaired kidney function may result in impaired glucuronidation and diuresis. While kidney impairment normally requires a dose reduction for those compounds which are mainly eliminated by renal excretion, for diuretics, a dose increment is required in order to maintain a required level of diuresis. The full clinical impact of the accumulation of furosemide and its acyl glucuronide in patients with end-stage renal failure has to be determined.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3